Technical Overview
What is Musoq?
Musoq is a SQL-like query engine that enables developers to query diverse data sources without requiring a traditional database. It transforms SQL queries into executable C# code that can process files, APIs, databases, and other data sources through a flexible plugin architecture.
Core Architecture Principles
1. SQL-First Design
- Familiar SQL syntax for data querying
- Extensions for non-relational data scenarios
- Type-safe query processing
2. Plugin-Based Extensibility
- Modular data source plugins
- Custom function libraries
- Clean separation of concerns
3. Dynamic Compilation
- Runtime C# code generation
- JIT compilation for performance
- Type safety throughout the pipeline
4. Unified Data Access
- Single query language for multiple data sources
- Consistent API across different data types
- Seamless data source composition
Key Components at a Glance
┌─────────────────────────────────────────────────────────────┐
│ MUSOQ ARCHITECTURE │
├─────────────────────────────────────────────────────────────┤
│ Parser │ Converter │ Evaluator │ Schema System │
│ -------- │ --------- │ --------- │ ------------- │
│ • Lexer │ • AST │ • Compiler │ • Data Sources │
│ • AST │ Transform│ • Runtime │ • Type System │
│ • Syntax │ • Code Gen │ • Execute │ • Plugins │
│ Analysis │ • Optimize │ │ │
└─────────────────────────────────────────────────────────────┘
Parser Module
- Input: SQL query string
- Output: Abstract Syntax Tree (AST)
- Purpose: Validate syntax and create structured representation
Schema System
- Input: Data source specifications
- Output: Type information and data access methods
- Purpose: Provide unified interface to diverse data sources
Converter Module
- Input: AST + Schema information
- Output: Optimized AST + Generated C# code
- Purpose: Transform query logic into executable code
Evaluator Module
- Input: Generated C# code
- Output: Query results
- Purpose: Compile and execute queries with runtime support
Data Flow Example
Let’s trace a simple query through the system:
Input Query
SELECT Name, Size
FROM #os.files('/Documents')
WHERE Extension = '.pdf'
ORDER BY Size DESC
1. Parsing Phase
// Tokens: SELECT, Name, Comma, Size, FROM, Hash, os, Dot, files, ...
// AST: SelectNode { Fields: [Name, Size], From: FunctionNode { Schema: "os", Method: "files" }, ... }
2. Schema Resolution
// Resolve #os.files -> OSSchema.GetFilesRowSource
// Infer types: Name (string), Size (long), Extension (string)
3. Code Generation
// Generated C# (simplified):
public Table Execute() {
var source = new OSFilesRowSource("/Documents");
return source.Rows
.Where(f => f["Extension"].ToString() == ".pdf")
.Select(f => new { Name = f["Name"], Size = f["Size"] })
.OrderByDescending(f => f.Size)
.ToTable();
}
4. Compilation & Execution
// Compile to assembly, create instance, execute
var results = compiledQuery.Run();
Plugin Development Overview
Creating a Data Source Plugin
// 1. Schema Definition
public class MyDataSchema : SchemaBase
{
public override string Name => "mydata";
public override RowSource GetRowSource(string name, RuntimeContext context, params object[] parameters)
{
return new MyDataRowSource(parameters);
}
}
// 2. Data Source Implementation
public class MyDataRowSource : RowSource
{
public override IEnumerable<IObjectResolver> Rows
{
get
{
foreach (var item in GetMyData())
yield return new EntityResolver<MyDataItem>(item, MyDataMapping.Instance);
}
}
}
// 3. Usage in Queries
// SELECT * FROM #mydata.source('parameter')
Performance Characteristics
Compilation Strategy
- First Execution: Parse → Transform → Compile → Execute
- Subsequent Executions: Cache hit → Execute directly
- Memory Usage: Minimal object allocation during execution
Optimization Techniques
- Predicate Pushdown: WHERE clauses pushed to data sources
- Lazy Evaluation: Data processed on-demand
- Type Inference: Compile-time type checking
Scalability Considerations
- Data Size: Optimized for small to medium datasets
- Query Complexity: Handles complex SQL constructs efficiently
- Plugin Ecosystem: Modular design supports growing data source library
Use Cases and Benefits
Development Scenarios
- Code Analysis: Query source code structure and metrics
- Log Processing: Analyze application logs with SQL
- File System Operations: Directory traversal and file analysis
- Data Transformation: Convert between different data formats
Operational Benefits
- No Database Required: Direct data source querying
- Familiar Syntax: SQL knowledge immediately applicable
- Rapid Prototyping: Quick data exploration and analysis
- Integration Friendly: Easy to embed in applications
Integration Patterns
Embedded Usage
var engine = new MusoqEngine();
var results = engine.Execute("SELECT COUNT(*) FROM #os.files('/logs')");
CLI Usage
musoq "SELECT Name FROM #git.commits('/repo') WHERE AuthorEmail LIKE '%@company.com'"
Custom Plugin Integration
engine.RegisterSchema<MyCustomSchema>();
var results = engine.Execute("SELECT * FROM #mycustom.data()");
Next Steps
For comprehensive technical details, implementation guides, and advanced usage patterns, see the complete Architecture Documentation.
Key topics covered in the full documentation:
- Detailed component architecture
- Plugin development guide
- Performance optimization strategies
- Error handling patterns
- Testing approaches
- Extension points and customization options